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NOTE 

Comparison between 1 D and 1 ;D Eulerian Vlasov Codes for the 
Numerical Simulation of Stimulated Raman Scattering 

1. INTRODUCTION 

Recently, a relativistic Eulerian Vlasov code has been 
developed to study charged particle acceleration through 
stimulated Raman scattering or beat wave of intense laser 
beams in a plasma [l-3]. Most of the numerical studies on 
the topic were performed until recently with particle codes 
[46]. We have shown that the use of an eulerian scheme 
for the integration of the relativistic Vlasov equation allows 
a liner resolution in phase space than a particle code and 
especially provides a detailed examination of the low 
density regions of phase space which are badly delineated 
in the usual particle-in-cell (PIC) codes. 

Since particle acceleration is achieved through a 
mechanism producing a longitudinal large amplitude elec- 
tron plasma wave along the laser wave-vector direction (say 
x-direction) the relativistic Vlasov equation can be solved 
for the electron distribution F(x, p, t) only, together with 
Maxwell’s equations, where all field quantities are functions 
of the space variable x only. Furthermore, we considered in 
[l-3] the following class of exact solution 

F(x, P, 1) = 4p, - eA,) fb, px, t) 

which means that the longitudinal motion obeys the 
relativistic Vlasov equation for f(x, pX, t) which describes 
accurately the longitudinal motion of electrons in the two- 
dimensional x - px phase space. On the other hand, the 
effective transverse motion of particles is “cold” and simply 
described by a fluid macroscopic equation for the transverse 
non-relativistic mean velocity uI = eA,/m, A, being the 
transverse vector potential. Therefore the resulting Vlasov 
code has been called a “1D code” throughout this paper. 

While restricted to a spatially periodic condition in [ 11, 
the code has been successfully extended to a nonperiodic 
causal bounded system [2, 31, allowing the code to deal 
with more realistic and longer plasmas. 

The central goal of this paper is to answer the question 
whether the simplified macroscopic perpendicular descrip- 
tion is adequate, especially for the strongly accelerated 
particle dynamics. This task has been achieved by extending 
our 1D Vlasov code into a full kinetic 1 ;D code. 

In Section 2 we present the numerical scheme for the 
electron distribtion function f(x, px, uY, t) in a three- 
dimensional phase space. The basic numerical steps are 
unchanged: the problems are only associated with memory 
size and CPU time. Comparison between 1D and 1 $D 
codes are presented in Section 3, for the Raman back- 
scattering case. 

2. A PERIODIC RELATIVISTIC 1 ;D EULER-VLASOV 
CODE 

We consider an infinite homogeneous plasma with a laser 
wave-vector in the x-direction, an electromagnetic field E, 
in the y-direction and B, in the z-direction, all field quan- 
tities being functions of the space variable x only (see [ 1 I). 
The electron distribution functionf(x, p,, uY, t) obeys the 
Vlasov equation 

f+ k af - e( E, + uy B,) af 
at my ax ap, 

-;(Ey-gBz)g=O, (1) 

where the Lorentz factor is given by 

(2) 

assuming that vY G c in the transverse direction. 
The longitudinal self-consistent electric field is given by 

Poisson’s equation 

a24 e 
~+--&(ni-%(x, t))=O, (3) 

with 

E,= -ad/ax, (4) 

ni being the homogeneous ion density and n, the electron 
density defined by 

n, = f  fb, px, uy, 1) dp, do,. (5) 
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The transverse electromagnetic fields obey Maxwell’s 
equations, 

dB aE r= -2 
at ax 

dE aB J Y= -C2r--2 
at ax E. 

(6) 

(7) 

with 

J&G t) = --e j. u,f(x, P,, uy, t) 4, du,. (8) 

Numerical integration of Eq. (1) is obtained by using a 
well-known fractional step or splitting scheme. The scheme 

integrates the Vlasov equation over a full time step At with 
second-order accuracy. The operators fi, pYy, and P, denote 
respectively the shift of the electron distribution function in 
x, uY, andp,-directions for a time step At. Let us define t, = 
ndtandr,,, = (n + 1) At and t,+ 1,2 = (n + i) At; thus the 
fractional step method involves five successive steps: 

Step 1. B/2 operator corresponds to the shift in the 
x-direction for a half time step At/2: 

f*k Px, u,, hI+1,2)=f x-Pg, Px,Uy, cl). (10) 
( 

Step 2. fJ2 operator corresponds to the shift of the 
distribution function in the u,-direction for a half time step 
At/2 and we have 

f**k Px, uy, t,+ l/2) 

=f* (x, Px, uy+&(Ey-g&)$ &+,,,). (11) 

Step 3. j, operator corresponds to the shift in the 
p,-space for a full time step At, and we have 

f***(x? PX? up tn+ 1/J 

=f**(x, px+4Ex+ u,B,)A& uy, &+,,2). (12) 

and so on. Thus the sequence (9) allows us to computefat 
grid points at time t, + 1 from the known values at time t,. 
A cubic spline interpolation is used to compute the various 
shifts of $he distribution function; as in Ref. [ 11, spatially 
periodic boundary conditions are considered. 

2. NUMERICAL RESULTS 

A backward Raman scattering instability (BRS) has been 
investigated with the decay of an incident linearly polarized 
light with a wave number k, = 3 Ak = 2.11350,/c into a 
scattered electromagnetic wave k, = - Ak = - 0.7045w,/c 
and an electron plasma wave of wavenumber k, = 4 Ak = 
2.8180,/c with the matching conditions k, = k, + k, and 
o0 = o, + w, for the corresponding frequencies. Ak = 21rfL 
is the fundamental mode, with L the length of the periodic 
box (in the present example we have L = 8.919c/o,). These 
parameters are the same as in Section 4 of Ref. [ 11. We have 
u, = (co; + 3k,Zu;h)1’2 = 1.073 wP for a corresponding value 
of the thermal longitudinal velocity u,~ = O.O8c, and we have 
o0 = (o* + kit*)“* = 2.339~~ for the pump frequency. 

The gansverse thermal velocity is urY = 0.06~. Further- 
more, for the mode k,, the exact frequency would be 
u = (co* + k;c*)“* = 1.223 oP and therefore the frequency 
misma&h is Aw = o, - (oO - 0,) = -0.04~0,. The initial 
condition for the electron distribution function is 

1 
f(x,p,, u,, t=O)=-e 

2 ~ (l/lq,)(px - a cm &,I)* 

271U,yUth 
+ e - ( 1/24(uy - up))* (13) 

This distribution function is a Maxwellian both in pX and 
u, space. In the exponent of Eq. (13), a cos k,x is a small 
initial perturbation to initiate BRS instability (we take 
a = 0.1); u,(x) is the mean transverse velocity. With an 
initial (pump) electromagnetic wave Ey = E, cos k,x, the 
corresponding value of u,, at time t =0 is then uY= 
- uox sin k,x. As in Ref. [ 1, Section 41, we select a quiver 
velocity u,,,/c = 0.108 (n, = 0.18n,,it). Due to the centered 
character of our numerical scheme (lo)-(12), u,* = uY 
(t = -At/2) has to be considered in the initial distribution 
function. This initialization respects the centered character 
of the numerical scheme. Other numerical parameters are 
identical as those used in Ref. Cl, Section 43. For the 1iD 
model we have used a grid of N,N,,N, = 64 x 128 x 64 
points. For the 1D model, we have used N,N,, = 64 x 256 
points. The computation time for the 1 fD code was 2.5 ps 
per time step per grid point, and for the 1D code the 
computation time was 1.1 ps per time step per grid point. 
The error in the density conservation in both codes is 10P5, 
and for the energy conservation it is 4 x 10P3. 

Figures 1,2, and 3 show respectively the different energies 
in mc* units as function of time: the pump electromagnetic 
energy (mode k,) and the electromagnetic scattered energy 
(mode k,) and the electrostatic plasma field energy (mode 
k,) are calculated respectively by using the 1D fluid Vlasov 
model in curves (a) and the 1 :D version in curves (b). In 
both cases the curves exhibit the same behavior in which the 
energy is transferred back and forth between the pump, 
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FIGS. l-3. Time evolution for (1) the pump, (2) the scattered mode, and (3) the plasma mode for each (a) ID model and each (b) 1 fD model. 

scattered, and plasma waves. The detailed mechanism of 
particle trapping and acceleration can be observed in Fig. 4 
in the x - px phase space representation. Figure 4a shows 
contour-plots in the upper half phase place (p, > 0) at three 
times: tw, = 40, to, = 50, and tw, = 60 for the 1D model, 
while Fig. 4b comes from the 1 ;D kinetic code at the same 
times. Again numerical results are in good agreement; both 
curves show clearly the same particle acceleration process to 
high energies. 

Furthermore, the 1 $D Euler-Vlasov code affords the 
required resolution to discern these phenomena and also the 
dynamics in the perpendicular phase-space as we can see in 
Figs. 5 and 6 at two different times during evolution. The 

first curve (Fig. 5a) gives, at time to, = 30, the representa- 
tion of the distribution function (averaged over px variable) 
in the x - uy phase-space and the corresponding mean 
velocity u,(x) is shown in Fig. 5b, computed directly by 
averaging over II,” space the distribution function given in 
Fig. 5a. 

Fig. 5c shows the corresponding mean velocity computed 
in the 1D model at the same time. Other curves of Figs. 6a, 
b, and c are related to time tw, = 70. Two points must be 
pointed out: 

- First, the modulation of the electron distribution 
function, initially on the mode k, = 3 Ak (due to the pump 
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FIG. 4. Comparison of the phase-space px -x contour plots for the ID and 140 models. 

electromagnetic wave) evolves according to the matching On the other hand, we have represented in Figs. 7a and 
condition k,, = k, + k, to end up with a modulation on the b the contour-plots in the upper half space (p, > 0) and the 
mode (k,l = Ak at the time to, = 70, corresponding to the corresponding 3D perspective representation of the electron 
scattered light wavenumber. distribution function in the p, - II, space (averaged over x 

variable) at the time to, = 90 at the end of the evolution. 
- Second, a modulation on the plasma mode k, = 4 Ak, The most important feature is the appearance of a “beam” 

acting on the bulk of the distribution function can be viewed of accelerated particles at high energies which seems 
in Fig. 5a, during the growth of the electron plasma wave. decoupled from the bulk of the plasma. 
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FIGS. 5,6. For to, = 30 (Fig. 5) and = 70 (Fig. 6): (a) phase-space x - oy for the 1 fD model; (b) mean velocity u,(y) for the 1 ;D model correspond- 
ing to (a); (c) mean velocity u,(x) computed in the 1D model. 
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FIG. 7. Distribution function in the velocity space (u,pJ: (a) contour plot; (b) perspective view. 
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3. CONCLUSION 

A 1 ;D relativistic Euler-Vlasov code has been developed 
in order to check the validity of a hydrodynamical descrip- 
tion used in a 1D version of the Vlasov code. Thus, detailed 
comparisons with numerical results obtained by using a 1D 
model have been carried out with those obtained with the 
1 $D code. Good agreement provides full support for the 1D 
electromagnetic Vlasov code which runs considerably faster 
than the 1 4D code. Within the capacity of supercomputers, 
a full kinetic 1 +D code (i.e., 3D dimensional phase space) is 
now available and can be of great interest for some 
problems in the field of laser-plasma interaction. We note, 
however, that these results assume a non-relativistic uY 
velocity. 
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